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Appendix A to chapter 3 in the book
Development of Packaging and Products for Use in Microwave Ovens, 2020

☼☼☼☼☼☼☼☼☼

Analytical calculations for arbitrary rectangular microwave oven modes
Note: Equation numbers without a preceding A. refer to the book chapter.

A.1 Coupling factor and system matching
Since the upper (ceiling) and lower (bottom) ends of the oven cavity
are closed by metal, the load is near the bottom, and the cavity height is
larger than λ0, one can analyse the system by assuming that the waves
propagate downwards and are reflected upwards, setting up a standing
wave pattern in the vertical direction. These patterns are thus
principally determined by the same criteria as those in the horizontal
directions. The load is now considered to be a flat horizontal slab
covering the whole horizontal cross section. If this full surface
coverage by the load not the case, no analytical calculations are
possible and numerical modelling has to be carried out. However and
quite importantly, it can be shown by numerical modelling that most of
the mode characteristics obtained by the calculations described here
apply quite well also for a “shelf coverage” by a slab-sheped load of 50
% or even less of the surface area.
The energy input is now assumed to be in the cavity ceiling, but other
locations are also possible to employ, then with the complication that
hybrid modes become analytically more complicated to deal with. It can be shown that only a small coupling
aperture is needed; see e.g. Paoloni [1989], then resulting in most of the retro-reflected energy from the slab
load being reflected back downwards. The impedance transformation at the aperture makes system matching
possible even for highly resonant modes and also provides mode selection by the aperture position and size.
Slot apertures are dealt with by Harrington [1961]. The ceiling area is thus partially a reflector for the
returning wave and partially an aperture that allows power to flow into the the cavity and also back into the
feeding transmission line.
The analytical scenario is illustrated in Fig. A.1. The stationary input signal C1+ into the cavity is normalised
to 1, but since the matching conditions at the aperture are not the same at the beginning of the energising as
under stationary conditions, the cavity input signal with the transmission line signal as reference will
gradually approach the stationary value – be it a constructive resonance or destructive interference or
anything in between.
The reflection factor r− is the electric field reflection factor at the load interface, and the minus superscript is
for the upwards-propagating direction away from the load. It is determined by the general formula

[A.1]

where η is the wave impedance of the cavity volume mode under study according to Eqs 3.6, and ηL the wave
impedance of this mode inside the load. If the load ε is complex, r− also becomes complex. However, the
spatial phase of r− due to the distance ℓ between the load an the reference plane at the ceiling and aperture
must also be included as e−jkℓ , where k is the cavity mode z-directed wavenumber kz, obtained from

[A.2]

No significant error is typically introduced by using |ηL| with typical food materials since their ε″/ε′ = tanδ is
less than about ½.

Fig. A.1 Cavity feed and stationary
signals
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The characteristic impedance of the transmission line between the generator and the cavity is Zg. The
quotient Cg

− /Cg
+ is the transmission line reflection factor Γ. The quotient C1− /C1+ is the cavity load reflection

factor r− and refers to the reference plane in the cavity ceiling.
It is common not to make a distinction between transmission line and wave propagation quantities in
descriptions of systems such as that under study here. Matching of both are needed in the junction. Different
notation is therefore recommended for transmission lines (Z and Γ) and wave quantities (η and r). The
boundary conditions for voltage and current in the port plane then give

Cg
+(1+Γ) = C1+(1+r−) (voltage and E field) [A.3a]

Cg
+(1−Γ)/Zg= C1+(1+r−)/η (current and H field) [A.3b]

It is convenient to label the quotient
Zg/η ≡ϰg ≡ ϰ [A.4]

where ϰ is the important parameter coupling impedance ratio in cavity studies.
The aperture reflection factor r+ as seen from the cavity is thus

r+ = (Zg −η)/(Zg +η) = (ϰ−1)/(ϰ+1) [A.5]

There is another important parameter as well, which is intimately related to the system matching: the (load)
coupling factor χ. It is defined as

χg,L ≡ χ = Zg/ηL [A.6]

The condition 0 < χ < 1 is called undercoupling, χ =1 critical (or matched) coupling, and χ > 1 is called
overcoupling.

It is assumed here that Zg is approximately real, since the cavity is fed directly by a lossless transmission line.
Since η is also real, ϰ is also approximately real. If the cavity is fed by a very small aperture, Zg → 0. At
system matched resonance (subscript R) one obtains, by insertion of Eq. A.1 into Eqs A.3:

Zg = ηL χ = 1 r+ = r− = rR ϰR = (1+rR)/(1−rR) (matching at resonance) [A.7]

A.2 Single mode system matching and Γ relationships for varying input
The frequency dependence of the stationary Γ = Cg

− /Cg
+ can be used as a practically relevant output variable

for determination of frequency bandwidth and other data or example by a standard polar chart. ϰR is then
firstly calculated and Zg is then considered constant in the following calculations. By solving Eqs A.3 for Γ in
a suitable frequency band one obtains

Γ = [1+r− −ϰR(1+r−)]/[1+r− +ϰR(1+r−)] [A.8]
The r− refers to the horizontal Ehor field in the cavity ceiling and becomes negative real at TE mode
resonance. A sign change is made when the calculations use the Hhor field as reference; that is the case for
TM modes. For these, the sign of r− changes when ν passes the Brewster value νB; the modified r− thus
becomes +1 for ν =1.
Since ν·f is constant and equals the ‘cut-off’ frequency fc, ν must be varied for maintaining constant cavity
geometry under frequency change. Of course, the frequency dependence of ν has to be used also in the
relationships for kz and the recalculations of r−. Insertion of the impedance relationships in Eqs 3.6 in to the
definition of ϰ in Eq. A.4 gives, with ε =1 in the cavity space

ϰ2 = ϰR
2·(1−ν2)/(1−νR

2) (TEz modes) [A.9a]
ϰ2 = ϰR

2·(1−νR
2)/(1−ν2) (TMz modes) [A.9b]

There is a mathemathical singularily for ν=1, since r− becomes exactly −1 irrespectively of system
dimensions, for both TE and TM. However, Γ is continuous at ν=1 so one just has to avoid that value in the
numerical calculations.

A.3 Decomposition of TEx modes into TEz and TMz modes
With the load surface in a constant z plane, a pure TEx (i.e. TE to x) mode will no longer propagate as that
after traversing the surface. Intuitively, that becomes obvious when the H field there is studied: it has x- and
y-directed components and the latter must induce an x-directed current component in the dielectric load. This
current is accompanied by a likewise x-directed E component, resulting in a violation of the TEx mode
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characteristics.
What happens can be understood by decomposing the TEmnx into a TEmnz and TMmnz mode. For
unidirectional propagation, the mode amplitudes CTE and CTM must be such that the condition Ex=0 is
achieved. Since C for TM modes is for the H field, the factor η0 in the expression for CTM disappers when the
E field is made reference as it is for CTE. It follows that ExTMz +ExTEz = 0 and EyTMz +EyTEz = EyTEx. Using Eqs 3.6
with the amplitude factors C as reference one obtains

CTEmn = CTMmn ·mb/na·E1−ν2 (TEmnx mode) [A.10]
The condition Ex = 0 in the aperture plane is maintained, which makes it necessary to use the sums
(CTE++CTE−) and (CTM++CTM−). The orthogonality between the TEmnz and TMmnz modes is maintained, but
their relative amplitudes and phases are determined by the cavity excitation and reflection factors at the load.
The normalised power absorption in the load by the two modes becomes orthogonal in terms of the overall
power. However, the heating pattern will be determined by the vectorially added fields.

A.4 Evanescent mode degeneracy
When ν >1, the orthogonality between the forward and backward waves in the cavity disappears. This seems
not to be pointed out much in the literature, but can readily be shown by considering that the ‘source’ signal
C1+ is reactive due to the imaginary factor E1−ν2 and the fact that orthogonality requires a sine or cosine
variation which is replaced by exponential decay for evanescent modes; there is thus no phase which is
needed for orthogonality.
By taking the Poynting vectors in the usual way, one obtaions the ‘drastically’ normalised power (a = b = m
= n = λ0 = 1):

(ν<1; TE and TM modes; C+=1) [A.11a]

(ν>1; TM mode; C+=1) [A.11b]

(ν>1; TE mode; C+=1) [A.11c]

where * is the complex conjugate. Note that an imaginary E1−ν2 is negative, due to the decay with distance.

A.5 Load power of aperture-fed cavity TM and TE modes
Since the Ey component is that which determines the mode amplitudes, the conditions for the E field of this
mode is used. The normalisation is the same as for Eqs A.11, except that Ey,mn is now set to 1 for both TEz
and TMz modes.
The Poynting vector for the propagating TM mode in Eq A11a becomes proportional to the square of the
amplitude (1−r) of the field, where r is calculated in the feed plane. The r becomes negative for ν beyond the
Brewster condition, since the H field is reference for TM modes in this section. Secondly, the input mode E
field amplitude is also proportional to E1−ν2, so that this factor squared must also be included. One obtains
the mode power normalised for an input TM mode E field amplitude set to 1 as

(ν < 1; TM mode; Ehor=1) [A.12a]

When ν >1, the only difference is that the nominator is replaced by the expression in Eq. A.11b. Since
reduction by E1−ν2 cannot now be made, one obtains

(ν > 1; TM mode; Ehor=1) [A.12b]

It is to be noted that Pmode represents what is possible to achieve in all possible cavities with any cross
sections fulfilling the dimensional and free space wavelength criterion in Eq. 3.5, at a specified distance ℓ
and with ν as variable. The normalisation provides a true comparison for square cross section cavities with
mode indices m = n resulting in equal Pmode for ν = 0.
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It is of particular interest what Pmode is obtained for ν = 1. For TM modes this is calculated by firstly setting
the exponential factors exp(±jk0E1−ν2z) to 1, representing either z =0 or ν =1. After insertion in Eq. A12a and
some manipulations one obtains,with the horizontal E field amplitude as reference:

(ν = 1 and ℓ arbitrary; TM mode; Ehor=1) [A.13]

Pseudo-Brewster TMz modes have r ≈ 0. In a similar way as for the ν = 1 case one obtains, with the
Brewster condition in Eq. 3.1:

(TM pseudo-Brewster mode; Ehor=1) [A.14]

For the TEz modes a completely analogous derivation to that for TM modes gives the following

(ν < 1; TE mode; Ehor=1) [A.15a]

(ν > 1; TE mode; Ehor=1) [A.15b]

Again, an imaginary E1−ν2 is negative. – By calculations as for the TM mode one finds that Pmode → 0 for ν
→ 1. Amplitudes of evanescent TEz modes are thus insignificant, as shown in Fig. 3.10.
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