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S
cientifi c and engineering research are of-

ten looking in opposite directions. On the 

one hand, it seems scientifi cally elegant to 

cast all knowledge into a general theory 

of everything [1]. On the other hand, the 

huge progress that is taking place in both theory and 

technologies naturally imposes specialization and 

pushes knowledge into very specifi c and unique lan-

guages. Consequently, people from distinct research 

areas often speak about similar phenomena using 

different terminologies. This makes their knowledge 

less portable and harder to disseminate beyond their 

own communities.

Electromagnetics (EMs) is a very good example of 

such tendencies. In principle, it spans a vast frequen-

cy range from dc up to at least the X-ray spectrum. 

In practice, except for very fundamental notions, it is 

hard to find a common technical language between, 
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for instance, dc electronic and fiber telecommunica-

tion engineers. It is not surprising, therefore, that each 

branch of EMs has developed its own computational 

methods, tailored for its particular kinds of problems. 

For example, circuit theory is well established in 

the low-frequency spectrum. In this regime, the mod-

eled objects are much smaller than the wavelength, 

and quasistatic approximations can be applied with 

voltages and currents instead of electric and mag-

netic field intensities, respectively. As the frequency 

increases, the wave theory becomes more adequate 

and, in consequence, it governs in RF, microwave, and 

millimeter-wave engineering. Higher up in the fre-

quency spectrum, rigorous wave theory is still valid 

but becomes computationally less effective due to the 

large dimensions when compared to the wavelength. 

Thus, approximate methods tend to be applied in 

optics based on ray tracing, scalar/vector diffraction 

theory, etc.

In principle, all of the mentioned methods are based 

on the same physical laws of EMs, collated into a com-

mon notation by James Clerk Maxwell [2]. Numerical 

methods for solving Maxwell’s equations in three space 

dimensions and time, subject to any specific boundary 

conditions, have attracted a lot of research interest over 

the last few decades. This has created a new field of 

knowledge called computational EMs and has resulted 

in practical EM software packages. Thus, with the aim 

of bridging the gap between microwaves and photon-

ics, a natural first step appears to be adapting these 

software tools for higher-frequency applications.

In this article, we will focus on a number of practical 

examples that can give an overview of current trends 

in full-wave EM modeling of optical problems with 

the aid of the finite-difference time-domain (FDTD) 

method [3]. The authors of this article have several 

decades of experience in FDTD development. The arti-

cle should be considered a review of their experience 

in that field rather than a comprehensive treatment of 

the matter. Another aim is to show that computational 

EM methods, like FDTD, that were originally known 

and well established in microwaves are now becoming 

feasible tools in higher-frequency spectra.

Guided Two-Dimensional and 
Periodic FDTD Algorithms
There are many variants of the FDTD algorithm dedi-

cated to the effective modeling of specific problems. 

Some of these variants take advantage of analytical 

properties of fields in a particular problem that allow 

one to reduce the dimensionality or size of the corre-

sponding numerical scenario. This results in a reduc-

tion in computational effort with respect to the brute 

force of a full three-dimensional (3-D) FDTD simula-

tion of the original problem.

A popular class of algorithms with reduced dimen-

sionality comprises various two-dimensional (2-D) 

FDTD schemes, such as scalar 2-D [4], guided 2-D [5], 

or axisymmetrical 2-D [5]. See “Guided-2-D FDTD 

Method” for the definition of that method. Various 

applications of the axisymmetrical 2-D FDTD method 

have been discussed in a recent paper [6]. Here, we 
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People from distinct research areas 
often speak about similar phenomena 
using different terminologies.

Consider a structure uniform in the z-direction. Its xy-
cross-section may be as simple as that of a rectangular 
waveguide or as complicated as that of the photonic 
crystal (PhC) fi ber in Figure 3(b)—the key point is that 
the cross-section remains identical at any z coordinate. 
The Fourier transform is applied in the z-dimension 
decomposing each fi eld component G into a spectrum 
of forward and backward propagating waves:

G 1x, y, z, t 2 5 g 1x, y, t 2  e6 j 1bz1w2,

where g(x, y, t) is a real-valued function and b denotes 
the propagation constant. Waves corresponding to 
different values of b do not couple and hence can be 
analyzed separately. Moreover, for each traveling wave, the 
components Ez  , Hx, and Hy are all in phase, and shifted by 
90° with respect to the components Hz, Ex, and Ey  . 

Note that full information about the geometry is 
provided by its cross-section. Moreover, discretization 
along the z-axis is not needed, since multiplication by 

b analytically produces all z-derivatives of transverse 
field components required by Maxwell’s equations, 
also compensating the 90° phase shift between Hx, Hy,  
and Ex, Ey. We can therefore suppress the exponential 
term in the above Fourier expansion and fully solve the 
problem in two spatial dimensions in time in terms of 
real functions g for any assumed value of parameter 
b. The problem is spatially 2-D, but different from 
the classical (scalar) 2-D problems in that all six field 
components may mutually couple and need to be 
included in the simulation. It has been proposed in [5] 
to denote such problems as vector 2-D ones. A vector 
2-D problem reduces to a scalar 2-D problem when 
b 5 0, i.e., at the mode cut-off.

In fact, the class of vector 2-D problems spans a much 
broader range of applications than guided waves. These 
are beyond the scope of the present article, but examples 
can be found in the original reference [5] as well as a 
recent review of axisymmetrical vector 2-D modeling [6].

Guided-2-D FDTD Method
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shall consider scalar and guided 2-D FDTD algorithms 

for EM modeling of optical problems.

Another class of FDTD algorithms utilizes the Flo-

quet theorem [7] for periodic structures. This leads to 

so-called periodic boundary conditions (PBC), which 

allow the representation of an infinite periodic struc-

ture by its FDTD model over just one period [8], [9], 

[10]. See “Periodic FDTD Method” for a definition of 

that method.

In the following sections, scalar 2-D, guided 2-D, 

and periodic FDTD simulations will be discussed. 

Examples concerning photonic crystals (PhCs), 

microstructured optical fibers, and scatterometry 

of integrated circuits (ICs) are analyzed with FDTD 

formulations [11]. In the final example, the 2-D 

FDTD algorithm is hybridized with a scalar Fresnel 

Technological advances observed in 
the last century have been closely 
related to the dynamically growing 
knowledge about physical properties 
of electrons in solid-state materials.

Consider a structure periodic in the z-direction, where 
periodicity may be cascaded as in the fi gure below or 
continuously, as in sinusoidally corrugated waveguides. 
In either case, no single xy-cross-section fully represents 
the 3-D geometry, but a sample of a single period (or 
multiple periods) does.

The Floquet theorem [7] implies that any fi eld 
component G may be written as:

 G 1x, y, z, t 2 5 g 1x, y, z, t 2  e6 j1b0z1w2, 

where g(x, y, z ,t) is a real-valued function periodic 
with period L and b0 denotes a fundamental 
propagation constant of a particular wave. Note that 
any such wave also comprises an infi nite series of 
spatial harmonics propagating with 6b0 6 2 mp/L, 
m 5 1, 2, 3, . . . . Hence, the solution cannot be sought 
for a single value of b0 individually.

However, periodicity of function g allows us 
restrict the analysis to a single period of the structure, 
for example, spanning the FDTD mesh between 
coordinate z1 and z2, where the tangential Ex, Ey fields 
(further denoted by E' for compactness) are defined. 
In one FDTD implementation (denoted in the literature 
as the CL-FDTD method [9]), these tangential electric 
fields are updated in a regular manner starting at 
coordinate z1 and terminating at z2 2 D z. Tangential 

magnetic fields at z1 2 0.5D z needed for electric 
field updates at z1 are obtained by complex backward 
looping from z2 2 0.5D z, as follows from the above 
Floquet expansion:

H' 1x, y, z1 2 Dz/2, t 1 Dt/2 2

5 H' 1x, y, z2 2 Dz/2, t 1 Dt/2 2  exp 12jc 2 ,

where c 5 bz0 L is the fundamental Floquet phase 
shift per period L. Similarly, tangential magnetic 
fields are updated in a regular FDTD manner 
starting at coordinate z1 1 0.5D z and terminating 
at z2 2 0.5D z, with the tangential electric fields 
needed for the last update obtained by complex 
forward looping:

 E' 1x, y, z2, t 2 5 E' 1x, y, z1, t 2  exp 1  jc 2 . 

Numerical analysis is performed over one spatial 
period typically using complex notation for the fields, 
to accommodate general complex values of the 
looping factors. 

Various periodic FDTD formulations are known from 
the literature. Early papers advocated sin/cos [42] or 
“split-field update” techniques [43]. The former was 
considered monochromatic. The latter needed new 
field quantities to be defined instead of the original 
electric and magnetic field intensities. Its advantage 
resided in a possibility to analyze wideband oblique 
illumination, however, it was likely to produce unstable 
solutions for grazing incidence angles. More recently, 
Spectral-FDTD [44] and FDTD dedicated to leaky wave 
analysis [45] have been proposed. They are extensions 
of the sin/cos concept, and are similar to the CL-FDTD 
algorithm discussed herer. The method of [45] is 
advantageous as it allows direct extraction of complex 
propagation constants. 

The Complex Looped FDTD has been used in this 
article due to its proven stability properties being the 
same as for the standard FDTD method. More details 
may be found in [9].

Periodic FDTD Method

L

z1 z2 z

Schematic view of a periodic structure with period L.
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diffraction  approach for the effective analysis of lens 

imaging of subwavelength objects. 

Photonic Crystal Devices
Technological advances observed in the last century 

have been closely related to the dynamically growing 

knowledge about physical properties of electrons in 

solid-state materials, such as crystals. Regular com-

position of molecules in crystals creates energy gaps 

for electrons. This leads to an opportunity for build-

ing diodes, transistors, and more complex electronic 

devices. Recently, an analogous concept has become 

very popular in photonics, with a view to controlling 

the flow of photons and building alternative devices to 

electronic ones.

The idea consists of producing a so-called PhC 

that interacts with photons in a similar way as a solid 

crystal interacts with electrons, though on a differ-

ent spatial scale. PhCs are typically formed with two 

dielectrics of different refractive indices and arranged 

alternately into a lattice that is periodic along one, two, 

or three dimensions. A proper design of such PhC pro-

duces a photonic band gap (PBG), indicating energies 

(frequencies) of photons where the propagation inside 

the PhC is prohibited (in other words, EM waves are 

evanescent). This specific feature allows one to build 

devices such as planar waveguides [12], channel-drop 

filters [13], or couplers [14], to name a few.

The FDTD method, supplemented with PBC, is a 

highly relevant tool for investigating EM properties 

of PhC compositions. There are also other numerical 

methods that find application in the modeling of PhC 

structures, including finite-difference frequency-do-

main [15] or plane wave expansion [16] methods.

Consider a planar 2-D hexagonal air-hole lattice pro-

duced in gallium arsenide 1er 5  13 2 , as shown in Fig-

ure 1(b) [17]. The lattice constant and the  air-hole radius 

are a 5 1 mm and r 5 0.48 mm, 

respectively. When the aim is 

to consider dispersion proper-

ties of modes with transverse 

electric (TE) or transverse 

magnetic (TM) polarization, 

the model can be reduced to 

a single layer of FDTD cells 

between magnetic or electric 

boundary conditions, respec-

tively. This simplifies the 

FDTD algorithm to a scalar 

2-D one. Electric and mag-

netic field components are 

then looped at the sidewalls 

of the model using PBC, so 

that only a scalar 2-D peri-

odic FDTD model of a single 

periodic cell of Figure 1(b) 

remains to be analyzed.

With the FDTD cell size set to 8 nm, the whole 

model consists of about 85,000 FDTD cells, occupying 

25 MB of RAM. A single simulation with a particular 

set of Floquet phase shifts (defined in “Periodic FDTD 

Method”) imposed across the periodic boundaries, 

a virtual pulse source, and Fourier transform copro-

cessing of a selected field component, yields the fre-

quencies, where different modes can propagate in the 

structure, satisfying the assumed phase shifts [18]. 

Such a simulation takes about 20 seconds on an Intel 

Core2 Duo CPU 3 GHz (10 seconds on Intel Core i7 

with multithreading [19]). To obtain a complete pho-

tonic band gap diagram within the first Brillouin zone 

[17], as shown in Figure 1(a), about 30 simulations 

were carried out [18].

Figure 1(a) shows that the investigated hexagonal 

lattice exhibits a complete photonic band gap for a/l 

ratios between 0.428 and 0.518. This means that no TE 

or TM wave can penetrate the structure within this 

photonic band gap. The obtained solution is scalable, 

i.e., one can manufacture such a PhC slab for optical 

applications as well as for the other frequency regions, 

providing that materials with appropriate dielectric 

properties are available.

The photonic band gap phenomenon can also be 

exploited to guide photons in planar circuits more effi-

ciently than using other technologies based on total 

internal reflection (TIR). Figure 2(a) depicts the sce-

nario with a sharp bend in a planar PhC waveguide 
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Figure 1. (a) Photonic bandgap diagram for the hexagonal air-hole lattice shown in (b), 
which is manufactured in GaAs 1e r 5 13, a 5 1 mm, r 5 0.48 mm 2 . 

Another advantage of a time-domain 
approach is that the user can 
dynamically monitor the EM wave 
propagation as the simulation 
is running.
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hollowed in a rectangular lattice of dielectric rods 

1er 5  11.56 2  [20]. The lattice constant and the rod 

radius are a 5 0.58 mm and r 5 0.104 mm, respectively. 

Here, the aim is to consider a TM polarized wave 

propagating at l 5  1.55 mm. The model is, therefore, 

simulated with the scalar 2-D FDTD algorithm ter-

minated by electric boundary conditions in the third 

dimension. The model is supplemented with input 

and output ports where a desired mode is numerically 

injected and received, utilizing the concept of modal 

templates [21]. With FDTD cell size set to 25 nm, the 

model consists of about 275,000 FDTD cells occupying 

about 48 MB of RAM.

As we can see in Figure 2(b)–(d), power is concen-

trated in the waveguiding area. Moreover, only a small 

amount of reflections are generated at the bend, as 

demonstrated by the Poynting vector envelope that is 

 practically flat along the direction of wave propagation. 

Due to its time-domain character and taking 

advantage of the generalized system of S-parameter 

extraction after [21], the 2-D FDTD method enables 

investigation of such devices over a wide spectrum in 

a single simulation run. The dispersive dependence of 

applied materials can be accounted for by applying 

special dispersive models [22], [23].

Another advantage of a time-domain approach is that 

the user can dynamically monitor the EM wave propaga-

tion as the simulation is running. This provides insight 

into the EM phenomena, facilitating design and optimiza-

tion processes.

Microstructured Optical Fibers
Another application of PhCs can be found in the tele-

communication fibers industry. Originally, propagation 

of light along fiber has been based on the TIR phenom-

enon with the refractive index of the cladding being 

lower than that of the core. Fibers have revolutionized 

modern telecommunications, successfully replacing 

other forms of wired data transmission in the most 

challenging technology areas. However, a disadvan-

tage of those classical clad fibers lies in the difficulty 

to control and compensate for their dispersion charac-

teristics. This limits the bandwidth of the propagating 

pulses and, by consequence, limits the maximum bit 

rate that can be transmitted via a single fiber core with 

an acceptable bit error rate (BER) level. In contrast, the 

application of a PhC structure as a cladding for the 

guiding core enables easier control of the dispersion 

characteristics of such PhC fibers (PCF) [24].

Direct 3-D FDTD modeling of PCFs, though pos-

sible, is still very time consuming due to their large 

dimensions with respect to the wavelength. Usually, 

the cross-section area is larger than 20l 3  20l. 

However, the guided-2-D FDTD algorithm may be 

easily applied [5]. This method can be used to investi-

gate modal properties of the PCF, reducing the numeri-

cal model to the PCF cross-section and incorporating 

particular propagation constant analytically. However, 

the FDTD method is not the only possible modeling 

method for PCFs. Some alternatives are plane-wave 

expansions [25], the finite element method [26] and 

the finite-difference frequency-domain method [27], to 

name a few.

Figure 3(a) shows a cross-section of an example 

hexagonal air-hole PCF manufactured in silica 

1er 5  2.1025 2  [28]. The lattice constant and the air-

hole radius are a 5 2.3 mm and r 5 0.5 mm, respec-

tively. The guided-2-D FDTD method [5] enables 

determination of the effective refractive index of 

each mode propagating in the considered PCF. 

We will concentrate on the fundamental mode 

having an electric-field distribution shown on a 

logarithmic scale in Figure 3(b). Due to the symme-

try of the mode, the FDTD model has been reduced 

to one quarter of the PCF cross-section, with mag-

netic and electric boundaries set on the cuts. At the 

external sides of the fiber, Mur boundary conditions 

with superabsorption [29] were imposed. Figure 3(c) 

depicts the FDTD results compared to the indepen-

dent results published in [28].

High accuracy must be ensured during FDTD 

simulations. Even a small error in an extracted effec-

tive modal index curve may significantly corrupt the 

final waveguide dispersion curve [Figure 3(d)], which 

is proportional to the second derivative of the effective 

modal index. Two measures have therefore been taken 

to increase the simulation accuracy. First, a fine FDTD 

cell size of 30 nm has been applied, generating a model 

(a) (b)

(c) (d)

Figure 2. (a) Top view of a planar photonic 
crystal waveguide bend made of dielectric rods 
1er 5 11.56, a 5 0.58 mm, r 5 0.104 mm 2  as modeled by 
the authors of this article in the finite-difference time-
domain software [11] based on the concept described 
in [20]. (b) Snapshots taken from our finite-difference 
time-domain simulation’s envelope of the Poynting vector 
at l 5  1.55 mm on linear and (c) logarithmic scales. 
(d) Instantaneous pattern of the Poynting vector at 
l 5  1.55 mm  on a linear scale.
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that consists of about 830,000 

FDTD cells. Second, each 

analysis has been run until the 

results have fully stabilized. 

With the simulation speed 

of about 180 iterations per 

second (360 on Intel Core i7 

with multithreading [19]), the 

 computation of each single 

point of the effective refractive 

index dispersion curve takes 

only about 30 min (15 on Intel 

Core i7 with multithreading 

[19]) on the previously men-

tioned PC occupying about 33 

MB of RAM.

Waveguide dispersion  

in the optical C band 1l 5  

1.55 mm 2  amounts to about 

D 5  35 ps/nm/km and rap-

idly changes around that 

wavelength. Playing with 

the PhC geometry, one can 

modify that characteristic for 

specific purposes. One popu-

lar practice is to compen-

sate material dispersion with 

waveguide dispersion. Another is to insert a section of 

fiber having a modified dispersion characteristic. By 

compensating for dispersion in the complete propaga-

tion channel, higher transmission rates are enabled.

Scatterometry
For many decades, the semiconductor industry has been 

pushing forward the limits of technology by accelerat-

ing the speed of electronic devices. This is mostly due 

to the shrinking dimensions of the features processed 

on a wafer. Currently, devices processed in 45-nm tech-

nology are available on the market and new technology 

nodes are being developed at 32 and 22 nm. However, 

both current and upcoming technology nodes are well 

below the resolution limit of state-of-the-art classical 

imaging methods, where common metrology tools were 

applied to control the lithography process. This is one of 

the reasons for increasing interest in alternative nonim-

aging metrology techniques like scatterometry [30].

A schematic view of a typical scatterometer is shown 

in Figure 4. Briefly, the fundamental idea of this tech-

nique is to illuminate special metrology targets pro-

cessed on a wafer with a wideband beam of light and, 

afterwards, measure the intensity of a mostly specular 

(mirror-like) reflected beam. Targets are usually com-

posed of line gratings processed with lithography in 

one or more layers. Assuming that the spectrum of the 

reflected beam contains information about the target 

geometry, it is possible to extract such parameters as 

the line width or the overlay [31] between gratings.

The FDTD method can be successfully applied to 

the modeling of such scatterometry scenarios. Assum-

ing that the illumination beam covers many lines of 

the target, the problem can be approximated with 

an infinite periodic scenario illuminated with an 

unbounded plane wave. This enables reduction of the 

FDTD model to a single period of the target with PBC 

applied along the periodicity axis [32].

Figure 5(a) presents a typical target with two grat-

ing layers processed on a silicon wafer. The top grat-

ing is made of photoresist and the bottom one is 

processed with silica in the silicon substrate. The pitch 

of the gratings is set to 320  nm and line-to-space ratio 

is L/S 5  1/1. The aim is to first illuminate the target 

with TE-polarized light (electric field longitudinal to 

the lines) at an angle of f 5  250 measured in the xy- 

plane from the normal to the wafer surface and then 

extract spectrum of the reflection coefficient.

Broadband

Light Source

Polarizer Analyzer

Wafer

Spectrometer
φ

Figure 4. A schematic view of a scatterometry tool.
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Figure 3. (a) Cross-section view of a hexagonal air-hole photonic crystal fiber as 
modeled by the authors of this article in the finite-difference time-domain software [11] 
based on the concept described in [28] 1er 5 2.1025, a 5 2.3 mm, r 5 0.5 mm 2 . 
(b) Results of our finite-difference time-domain simulation’s envelope of the electric 
field at l 5  1.55 mm on a logarithmic scale, (c) effective modal refractive index, and 
(d) waveguide dispersion characteristic for the considered fundamental mode.
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approximately 1.1 million FDTD 

cells requires about 176 MB 

of RAM. The target is illumi-

nated with a finite spot hav-

ing a Gaussian profile. The 

Gaussian beam diameter has 

been set to 4 mm.

Figure 5(b) depicts an exam-

ple envelope of the Poynt-

ing vector distribution on a 

logarithmic scale. Figure 5(d) 

presents the calculated reflec-

tion coefficient, compared 

with the results obtained with 

the periodic FDTD simula-

tions. Good agreement con-

firms validity of the periodic 

FDTD algorithm in this case. 

The Gaussian beam approach 

further enables the study of 

the impact of a diminishing 

spot size on the accuracy and 

variability of the scatterom-

etry technique. It also enables 

detection of the effects of 

imperfect periodicity.

Recently, extensions of the periodic FDTD algo-

rithm to the modeling of a finite source over an infinite 

structure have been published. The technique shown 

in [35] and [36] enables the investigation of EM dif-

fraction of a spatially restricted beam in an infinite 

periodic geometry by considering only a single period 

with the PBC imposed. The method can be more effi-

cient than the approach described above for modeling 

of Gaussian beam illumination of an infinite periodic 

structure. However, it cannot model finite dimensions 

of the target and possible diffraction of the beam from 

the edges.

Hybrid FDTD-Fresnel Modeling 
of Lens Imaging Phenomenon
Optical lens imaging is a typical problem where brute 

force full-wave modeling is still  computationally 

impossible because the length of entire problem 

space can be measured in thousands of wavelengths. 

Therefore, alternative numerical algorithms are used 

instead, based on approximate methods like ray trac-

ing or diffraction optics [37]. However, these methods 

are likely to fail when geometrical details become 

comparable to the operating wavelength, as often 

happens when the target has a complicated geometry. 

This is the main reason for the growing popularity of 

hybrid computational methods that combine different 

algorithms to make a tradeoff between accuracy and 

computation time.

Literature concerning applicability of the FDTD 

method to modeling of far-field imaging problem is 

Because in the considered case there is no field 

variation along the lines of the target, the model can be 

reduced to the scalar 2-D FDTD, consisting of the target 

cross-section placed between electric boundaries. Fur-

thermore, application of PBC reduces the model to a 

single pitch. Both top and bottom sides of the model 

are truncated with superabsorbing Mur boundary 

conditions [29]. A near-to-far (NTF)-field [3] transfor-

mation is performed on a surface above the target to 

acquire the far-field scattering pattern and compute the 

reflection coefficient. 

The whole FDTD model with 27,000 FDTD cells 

requires about 26 MB of RAM. Figure 5(c) shows 

the obtained results against rigorous coupled-wave 

analysis (RCWA) [33] and very good agreement can 

be observed [32], [34]. The main advantage of FDTD 

approach, with respect to the better-established 

RCWA, is that nonrectangular geometries can easily 

be considered. Arbitrary illumination, other than that 

of plane waves, can be applied as well.

Both periodic FDTD and RCWA assume that the 

problem is infinite, i.e., an infinitely long target is illu-

minated with an unbounded plane wave. In the scatter-

ometry tools used in the IC industry, a finite periodic 

target is illuminated with a beam of finite spot size. 

To validate the periodic approach, the 2-D FDTD 

algorithm is applied to a practical scenario compris-

ing 50 pitches. All sides of the model are truncated 

with superabsorbing Mur boundary [29], where a 

NTF-field transformation is applied to compute the 

reflection coefficient. The whole FDTD model with 
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Figure 5. (a) A typical scatterometry target as modeled by the authors of this article in 
the finite-difference time-domain software [11]. (b) Results of our finite-difference time-
domain simulation’s envelope of the Gaussian beam (on a logarithmic scale) incident upon 
the target. (c) Spectrum of the reflection coefficient for infinite and (d) finite case.
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very limited, due to the size considerations discussed 

above. Some published results can be found in the field 

of breast cancer detection [38], however, this follows a 

different approach to the imaging concept without uti-

lizing focusing elements like lenses. In 2004, a paper 

about hybrid FDTD-Fresnel imaging of living tissues 

(embryo) was published [39]. Another discussion of 

hybrid FDTD-Fresnel modeling can be found in [40], 

addressing the issue of EM modeling of a confocal 3-D 

imaging of the subwavelength features.

One possible approach to EM modeling of lens 

imaging is to apply the FDTD method in the close 

vicinity of the target where full-wave EM modeling 

is necessary. The remaining part of imaging path 

is analyzed with a less computationally intensive 

method, for instance, one based on the scalar Fresnel 

diffraction theory [41]. It should be emphasized that 

the scalar Fresnel approach is applicable to a model-

ing of low-numerical aperture (NA) (see “Numerical 

Aperture” for a definition) imaging tools, usually less 

than NA 5  0.6. For high-NA problems, a fully vecto-

rial, and hence more cumbersome, method should be 

applied [37].

Figure 6(a) and (b) depicts a schematic view of the 

investigated confocal microscope in illumination and 

scanning modes, respectively. Unlike wide-field micro-

scope tools, confocal imaging is capable of resolving a 

3-D shape of the target.

The illumination beam is approximated in a 

2-D FDTD model with a Gaussian beam [see Fig-

ure 6(d)], representing light radiated by the source 

through the input pinhole and focused by the objec-

tive lens onto the target [see the red lines in Figure 

6(a)]. A  Gaussian beam is launched as an excitation 

from above the target, as 

marked by the red Gauss-

ian beam wall (GBW) line 

in Figure 6(c). Afterwards, 

a NTF-field transformation 

is performed on a surface 

above the target [green line 

in Figure 6(c)] to acquire the 

 far-field scattering pattern. 

This is further coupled to 

another algorithm based on 

the scalar Fresnel approxi-

mation. Eventually, the light 

intensity  distribution at the 

image plane is obtained.

According to the concept 

of image formation in a con-

focal microscope, the above 

procedure has to be per-

formed several times, shifting 

the beam focus horizontally 

and vertically around the tar-

get. The whole set of coupled 
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Figure 6. Schematic view of the confocal microscope in (a) illumination and 
(b) scanning modes. (c) Model prepared by the authors of this article in the finite-difference 
time-domain software [11] and (d) a snapshot from our finite-difference time-domain 
simulations showing an example envelope of a Gaussian beam (electric field).

For many decades, the semiconductor 
industry has been pushing forward the 
limits of technology by accelerating the 
speed of electronic devices. 

In microscopy, numerical aperture (NA) denotes 
the range of angles over which a tool can collect or 
radiate light. In the figure, n stands for the refractive 
index of the medium in which the NA is considered 
and u denotes the half-angle of the focused/emitted 
light cone. In most cases, the larger NA is, the better 
the resolution of the optical tool can be achieved.

NA 5  n sinu

θ n = ! ε

Numerical Aperture

Numerical Aperture

Authorized licensed use limited to: POLITECHNIKI WARSZAWSKIEJ. Downloaded on April 22,2010 at 14:54:11 UTC from IEEE Xplore.  Restrictions apply. 



58  April 2010

FDTD-Fresnel simulations provide the final image 

pixel by pixel.

Consider the imaging of an isolated trench and 

line, respectively, processed in gallium arsenide 

1er 5  10.4976 2 . The height and the width of the trench 

(line) are the same, 10 mm. The length of the trench 

(line) extends to infinity, allowing us to apply the 

scalar 2-D FDTD algorithm. Assuming that the target 

is zo 5  2 mm from the objective lens and the image 

plane is zi 5  200 mm behind the lens, the focal length 

amounts to fL 5  1.98 mm. The NA has been set to 

NA 5  0.475 1u <  280 2 . 

The minimum FDTD cell size is set to 10nm, ensur-

ing at least 15 FDTD cells per operating wavelength 

1l 5  500 nm 2 . The whole FDTD model is 40 mm long 

[in the x direction in Figure 6(c)] to make sure that the 

excited Gaussian beam and the scattered field do not 

exceed the computational area.

A single FDTD simulation of the model, consist-

ing of about 1.3 million FDTD cells, takes about 5 min 

on the previously mentioned desktop computer (2.5 

on Intel Core i7 with multithreading [19]) occupying 

about 125 MB of RAM. The whole image has been 

computed with a 1 mm step, though, due to symme-

try of the targets, only half of each image has been 

collected. Thus, the total FDTD computation time 

amounts to about 24 h (12 h on Intel Core i7 with mul-

tithreading [19]).

Figure 7(a) and (b) depicts the images obtained 

from hybrid FDTD-Fresnel simulations developed 

by the authors of this article. The green lines indicate 

the real shape of the target. It can be noticed that the 

shape of each target is discernable, although, as one 

might expect, the axial resolution is a bit worse than 

the lateral one, resulting in blurred horizontal edges. 

Another interesting phenomenon is seen at the sharp 

corners of the trench (line). Due to significant dif-

fraction of the incident light at the corners of trench 

(line) dark vertical gaps can be observed in both 

images around x 5  25 mm and x 5  5 mm. 

This example implies that the FDTD method can 

play an important role in the modeling of problems that 

are definitely beyond its computational capabilities at 

the moment. The presented hybrid methodology can be 

easily extended to the more advanced and complicated 

scenarios both in the FDTD and Fresnel regions.

Conclusion
Time-domain EM software has reached its maturity 

for the analysis of practical microwave and millime-

ter wave problems. This leads to significant interest in 

expanding the scope of applications of the available 

software packages into higher-frequency ranges. Such 

an interest has been declared by many software devel-

opers who naturally seek new markets for their exper-

tise and tools. But, even more importantly, interest is 

 also being shown by engineers and entrepreneurs 

affiliated with the rapidly growing fields of infrared 

and  optical technologies. 

The increasing complexity of photonic and optical 

devices means that the classical approximate methods, 

for example, ray tracing or diffraction theories, often fail 

to provide accurate designs. On the other hand, brute 

force full-wave modeling, while theoretically adequate, 

is impractical due to typical problem sizes that are mea-

sured in hundreds or thousands of wavelengths and, 

hence, require prohibitive computer resources.

In this article, we have demonstrated that many 

representative problems of optical technologies can 

be accurately and effectively solved with the com-

mercially available FDTD software, provided that 

such software offers the flexibility applying partial 

analytical knowledge to the problems. This is the case 

with scalar 2-D or guided 2-D FDTD algorithms rel-

evant to the analysis of PhCs 

or microstructured optical 

fibers, as well as periodic 

FDTD method applicable in 

the scatterometry of ICs. 

We have also demon-

strated an effective approach 

of hybridizing the FDTD and 

scalar Fresnel approaches for 

accurate and effective model-

ing of lens imaging phenom-

ena. We believe that further 

developments along these 

lines using FDTD methods, 

supported by the concurrent 

developments in computer 

technology, will lead to hybrid 

time-domain software tools 

becoming a breakthrough in 

optics and photonics.
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Figure 7. Images produced by hybrid finite-difference time-domain-Fresnel 
simulations of a single 10 3  10 mm2 target prepared by the authors of this 
article (a) trench and (b) line, processed in GaAs 1er 5 10.4976 2  and imaged at 
l 5  500 nm 1 fL 5 1.98 mm, NA 5 0.475 2 . 
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