

Th1E-2

A Novel Q-Choked Resonator for Microwave Material Measurements Alleviating Sample Thickness Limitations of Existing Techniques

Malgorzata Celuch, <u>Marzena Olszewska-</u> <u>Placha</u>, Lukasz Nowicki, Wojciech Gwarek *QWED, Poland*

Th1E-2

- Motivation
- Split-Cylinder Resonator
- Q-Choke concept
- Q-SCR Model
- Q-SCR vs SCR Simulation results
- Experimental validation
- Measurement results

Motivation

- Sample thickness limitation of common existing solutions (Split-Post Dielectric Resonator, Split-Cylinder Resonator, etc.)
 - with increasing frequency
 - with increasing dielectric constant
- Increasing demands for measurements of thick samples
 - Automotive industry e.g. plastic plaques for bumpers
 - High power and space applications e.g. vacuum windows
 - Etc.
- Enhancements in SCR method mitigating known limitations

Split-Cylinder Resonator

- Simple geometrical configuration
- A slot for inserting a sample is made without causing radiation of the measurement mode
- Multimode structure
 - measurement disrupted by higher order modes
 - for higher sample thickness
 - for higher dielectric constant

Vertical cross-section of the cavity with magnetic field lines and currents in the cavity walls, for the TE011 mode

Q-Choke concept

APPENDIX NET

- Q-Choke
 - mitigating undesired modes in scr cylindrical cavity resonators
 - symmetric slots in the cavity walls,
 - close to top and bottom ends of the cavity
 - uniform disruption of current paths
- "transparent" to useful TE₀₁₁ (TE_{0np}) modes
- selectively inhibits the propagation of unwanted modes (TE_{mnp} m>0 & TM modes

3D views (with 90 deg cut to show the interior)

Q-SCR Model

- 10 GHz Q-SCR is under investigation
 - Rc=18.85mm,
 - hc=28.2mm,
 - Ra=25mm,
 - ha=26.2mm,
 - Rq=28mm,
 - hq=10mm.
- Copper-made cavity
- Lossy rings for choke pockets PLA Conductive 750g Capifil via 3D printing.

Vertical cross-section of Q-SCR (classical SCR if $h_a = h_c$).

Q-SCR – Simulation results

- Simulated transmission spectrum
- Classical SCR and new Q-SCR,
- Visible suppression of undesired modes by the Q-Choke.

Experimental validation

Measurement setup

- Prototype of 10 GHz Q-SCR
- Keysight Streamline P5008B VNA
- Laptop with Dedicated Application

- Single crystal material chosen as a test material sapphire
- Five 2-inch ca. 400um-thick samples have been considered
- Sample thickness: 400 um 2 mm

Measurement results (1)

Dielectric constant

Nb. of discs	H _s [mm]	E _r	E _{r,av}	ɛ ,,ref*	δε _r [%] wrt ε _{r,av}	δε _r [%] wrt ε _{r,ref}
1	0.404	9.407			0.043	0.123
2	0.812	9.398	o 400		-0.053	0.028
3	1.219	9.415	9.403	9.3954	0.128	0.211
4	1.625	9.401			-0.021	0.060
5	2.030	9.395			-0.085	-0.004

*J. Krupka, K. Derzakowski, A. Abramowicz, M. E. Tobar, and R. Geyer, "Use of whispering-gallery modes for complex permittivity determinations of ultra-low-loss dielectric materials", IEEE Trans. Microw. Theory Tech., vol 47, no. 6, pp. 752-759, June 1999.

Measurement results (2)

Dielectric loss

Nb. of discs	H _s [mm]	$ an \delta_{\! m s}$	$ an \delta_{ref}$ *	$\delta an \delta_{\! m s}$ wrt $ an \delta_{\! m ref}$
1	0.404	1.37·10 ⁻⁵		0.16·10 ⁻⁵
2	0.812	1.89·10 ⁻⁵	-	0.68·10 ⁻⁵
3	1.219	1.83·10 ⁻⁵	1.21·10 ⁻⁵	0.62·10 ⁻⁵
4	1.625	1.93·10 ⁻⁵		0.72·10 ⁻⁵
5	2.030	1.9·10 ⁻⁵		0.69·10 ⁻⁵

* Single sapphire wafer measured with commercial SPDR 10GHz fixture

Other results

	Q-SCR	10GHz	SPDR 10GHz		
	Dielectric constant*	Loss tangent	Dielectric constant*	Loss tangent	
COP 189um	2.345 ± 0.014	$2.84 \cdot 10^{-4} \pm 2 \cdot 10^{-5}$	2.342 ± 0.018	2.98·10 ⁻⁴ ± 2·10 ⁻⁵	
Fused silica 800um	3.808 ± 0.008	8.99·10 ⁻⁵ ± 2·10 ⁻⁵	3.804 ± 0.007	9.25·10 ⁻⁵ ± 2·10 ⁻⁵	
Quartz 2mm	4.447 ± 0.004	1.80·10 ⁻⁵ ± 2·10 ⁻⁵	N/A		
Alumina 500um	9.123 ± 0.020	5.37·10 ⁻³ ± 2%	9.121 ± 0.030	5.40·10 ⁻³ ± 2%	

* Uncertainty bounds due to thickness variation

Conclusions

- •Innovative Q-Choked Resonators (Q SCRs) for Microwave Measurements:
 - thick material samples with arbitrary permittivity
 - verified through computational modeling
 - 10 GHz Q SCR prototype designed and manufactured.
- •Validation and Performance:
 - stacks of sapphire samples up to 2 mm thick were measured
 - exceeding declared thickness limitations of commercially available SCRs by over a factor of 8.
 - measured Dk and Df in excellent agreement with reference data and own SPDR measurements.
- •Future Prospects:
 - a series of Q SCRs for mmWave frequencies
 - using higher order modes
 - application to real life materials: automotive bumper plaques, semiconductor wafers, glass panes, vacuum windows, etc.

Acknowledgment

Thank you for your attention!

