

Last update on correlation between copper foil surface conductivity and roughness

CONFIDENT

Copper foil development Key driver

 Adoption of advanced technologies requiring faster data transfer speeds (5G, Al, automotive sensors, ethernet, etc.)

Signal loss reduction

 \rightarrow Ultra smooth copper foil while maintaining sufficient peel strength and reliability

Process Overview

Products Development

Foil Grade (Thickness 35µm)	HVLP 1 BF-TZA	HVLP 2 BF-ANP	HVLP 3 BF-NN/BFL-NN	HVLP 4 BFL-NX	HVLP 5 BFL-NF
SEM Pictures (x5000)	Sµm	Sum		Sum (ς ςμπ
Key Improvement	Standard	Nodular Treatment size Reduction by 5 compared to HVLP	Nodular Treatment Reduction by 20 compared to HVLP	Nano nodular treatment	Nodule Free Treatment (NF)
Target application	Switch Routers 100 G (28 GBps)	Switch Routers 400 G (56 GBps)	Switch Routers 800 G (112 GBps)	Switch Routers 1600 G (224 GBps)	Switch Routers 3200 G (Next Gen.)
Treated side Rz ISO/JIS (µm)	< 3.1 / 2.5	< 1.5 / 1.2	< 1.3 / 1.0 (BF) < 0.8 / 0.6 (BFL)	< 0.8 / 0.6	< 0.8 / 0.6
Treated side Sdr* (Surface developed Ratio)(%)	~ 110	~ 50	~30	~ 12	~0.02
PS PPE (N/mm)	~0.7	~0.7	~0.7	~0.7	~0.5

*Keyence VK-X1050; 661 nm laser; x50 lens

.....

Skin effect: AC has higher current density on the edges of the conductor (the "skin") at high frequency

δ: skin depth (m) f: frequency (Hz) σ: magnetic permeability (H.m⁻¹) π: electrical conductivity (S.m⁻¹)

CONFIDENTIAL

Product description

Insertion loss

- Gap in performances are decreasing for each HVLP generation
- Better understanding of each copper foil parameter's contribution is required to improve the properties of next generation foils
- Due to the contribution of ppg, board design, etc., and due to their high cost and lead time, insertion loss measurements are not ideal for in-depth characterization of copper foils

CONFIDENTIAL

Conductivity measurements LUXEMBOURG AND TECHNOLOGY

Limitations: no information on conductivity at high frequency; can only detect the impact of the bulk

100% ICAS = 5.8001 x10⁷ S/m

Surface conductivity measurement

European project "**5G Foil**" : Measurement and simulation of surface conductivity of copper foils at high frequency

RME

Sapphire Dielectric Resonator (up to 21 GHz currently)

Use of resonators to characterize Cu foil conductivity:

- Alternative current → information on surface
 conductivity at high frequency
- Direct measurement on copper → no interferences related to PCB manufacturing + quicker foil characterisation // development // optimisation

Fabry-Perot Open Resonator (up to 50 GHz theoretically)

Project co-financed by the Luxembourg National Research Fund under the Eurostars-3 programme Co-funded by EUREKA member countries and the European Union Horizon2020 Framework Programme

CONFIDENTIA

Surface conductivity measurements

RTF HVLP Ρ Surface conductivity

CONFIDENTIA

Surface conductivity measurements

Correlation between surface conductivity at **21 GHz** and roughness parameters:

Sa (μ m): difference in height of each point with the arithmetical mean of the surface Sdr (%): difference between the developed (true) and projected surface

Actual Surface area

$$sdr = \left[\frac{actual \ surface \ area}{projected \ area} - 1\right] \times 100$$

Much better correlation between surface conductivity and sdr than Sa (and other parameters such as Sz, Sq, Rz, Ra)

CIRCUIT FOIL

CONFIDENTIA

Roughness parameters comparison

CONFIDENTIAL

Correlation sdr – surface conductivity

- HVLP+ copper foils
 deviate from the trend
 (without them, R² is 0.99)
- What is the reason for this deviation?

CIRCUIT FOIL

CONFIDENTIAL

CIRCUIT FOIL

Skin depth

Simulation of Insertion Loss

Finite element modelling :

Simulation accuracy

Fail	Surface conductivity @ 21 GHz			
FOII	Measured	Calculated		
HVLP2	3.2 x10 ⁷ S/m	5.2 x10 ⁷ S/m		

Deviation of the simulation could be due to surface model deviation (much less dendritic surface)

Influence of Nodular treatment

Numerical simulations trends are well
aligned with actual measurement results

_		
	Products (35 µm thickness)	P/S on PPE N/mm
	HVLP 3 BFL-NN	~0.7
	HVLP 4 BFL-NX	~0.7
	HVLP 5 BFL-NF	~0.5

Conclusion and outlooks

- ✓ Excellent correlation between surface conductivity and sdr
- ✓ Roughness profile lower than skin depth has negligible effect on signal loss

<u>Next steps:</u>

- Improvement of finite element model accuracy
- > Investigation of copper properties at higher frequency
- Effect of passivation on surface conductivity
- Optimization of surface profile to achieve the best compromise between signal loss and adhesion

