

Inclusion of Thermal Dependent Material Relations for Modeling Microwave Ablation Antennas

Tomasz Nalecz, Lukasz Nowicki, <u>Malgorzata Celuch</u> QWED Sp. z o.o., Poland

Outline

- 1. What is Microwave Ablation?
- 2. Motivation
- 3. Antenna and model in QW
- 4. Results
- 5. Conclusion, what's next?

Microwave Ablation (MWA)

- Cancer treatment that uses microwave energy to generate heat
- Typically 900 MHz or 2.45 GHz
- Heating caused by friction of oscillating water molecules
- Cancer tissues are more likely to heat (more water molecules, higher conductivity)
- Modified coaxial cable is the simplest example of the MWA antenna
- Ablation Zone ≥ 60°C [4]

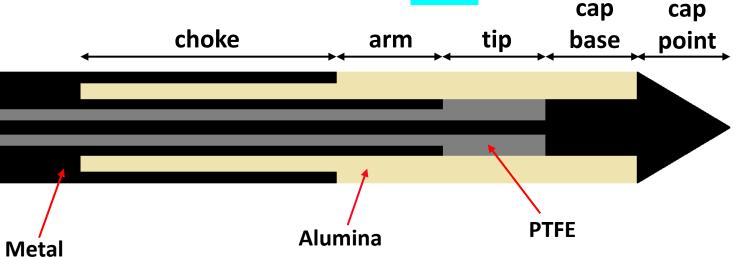
References

[1] QWED, QuickWave Basic Heating Module. [Online] Available: https://www.qwed.com.pl/qw bhm.html

[2] M. Cavagnaro, C. Amabile, P. Bernardi, S. Pisa, and N. Tosoratti, "A Minimally Invasive Antenna for Microwave Ablation Therapies: Design, Performances, and Experimental Assessment," IEEE Transactions on Biomedical Engineering, vol. 58, no. 4. Institute of Electrical and Electronics Engineers (IEEE), pp. 949–959, Apr. 2011. doi: 10.1109/tbme.2010.2099657

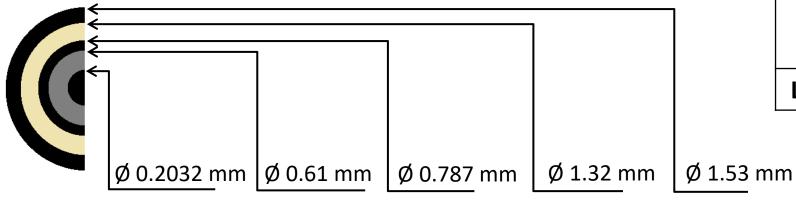
[3] QWED (2023), NanoBat – Coupled GHz Thermal workflow for a battery model. [Online] Available: https://www.qwed.com.pl/nanobat_coupled_ghz_thermal_woorkflow.html

[4] V. Lopresto, R. Pinto, L. Farina, and M. Cavagnaro, "Microwave thermal ablation: Effects of tissue properties variations on predictive models for treatment planning," Medical Engineering & Elsevier BV, pp. 63–70, Aug. 2017. doi: 10.1016/j.medengphy.2017.06.008.



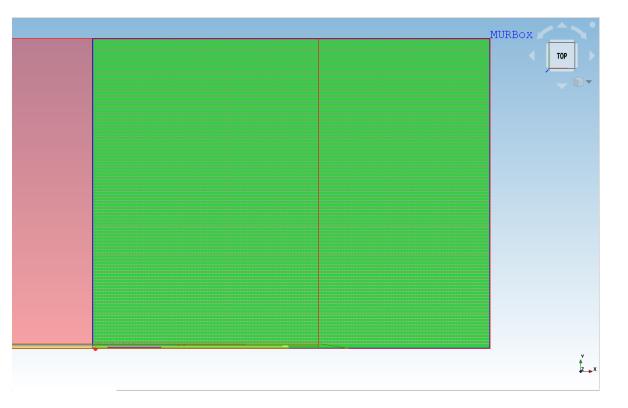
Motivation and Background

- Accurate simulations of microwave ablation antennas are essential for optimizing their design, predicting thermal distribution and improving clinical outcomes.
- We want to test and show capabilities of QuickWave FDTD simulator in simulating the MWA and further improve it.
- As a benchmark, we shall use designs and additional material parameters from paper [2].


Antenna Design [2]

Medium	PTFE	Alumina	
Permittivity	2.2	10	

Choke	Arm	Tip	Cap Base	Cap Point	
10 mm	6 mm	1 mm	5 mm	5 mm	


	$oldsymbol{arepsilon}_{r}$	σ (S/m)	$ ho$ (kg/ m 3)	C (J/kg· °C)	K (J/s· m·°C)
Liver	43.03	1.69	1041	3600	0.51

Antenna Model in QW

BOR V2D

Cell size: dx = 0.5 mmdy = 0.1 mm

Number of cells with boundaries:136144

Project size (RAM): ∼13 MB

Whole model size: 80 mm x 50 mm

Length of the antenna: 57 mm

TEM field at 2.45 GHz

Heating: 15 min – 20 W

Antenna Model in QW

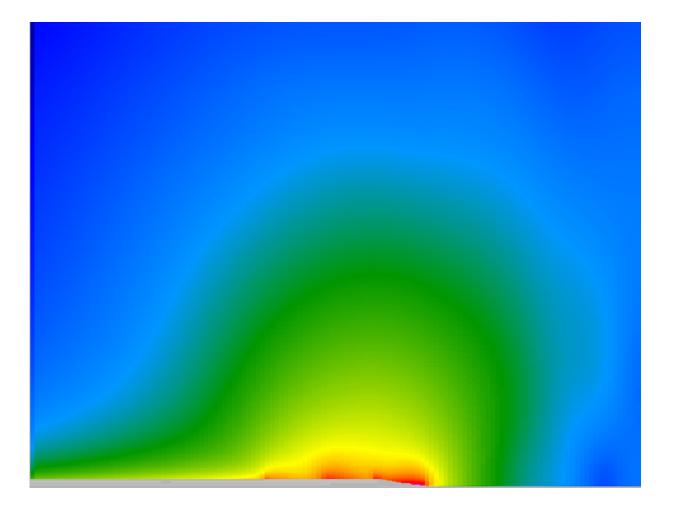
The QW-BHM is a heating module that was used in several projects before [1, 3].

The three different setups were applied:

- Neumann Boundary Condition without heatflow
- Neumann Boundary Condition with heatflow
- Neumann Boundary Condition with heatflow and temperature-dependent liver parameters

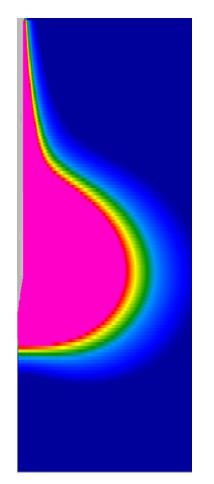
Antenna Model in QW

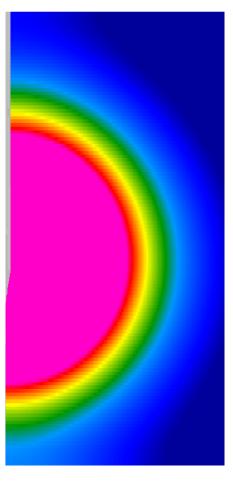
Temperature-Dependent parameters of the liver


# DATA FROM -20	C to +80 C,	dH/dV in J/cm3	reversedEnth	Temp col	Lumn	
!Temperature	Enthalpy	EPa	SIGa	SpecHeat	t Density	и Ka
# Data deg C	J/cm3		S/m			
-20	0	4.9	0.064	2.21	1.041	0.0051
-15	14.0	5.5	0.093	2.21	1.041	0.0051
-10	34.4	6.1	0.153	2.21	1.041	0.0051
-5	71.4	12.3	0.573	2.21	1.041	0.0051
-3	110.4	22.0	1.118	2.21	1.041	0.0051
-2.2	144.4	30	1.636	2.21	1.041	0.0051
-1.6	192.4	42	2.113	2.21	1.041	0.0051
-1.3	240.4	46	2.385	2.21	1.041	0.0051
-1.1	274.4	48.9	2.426	2.21	1.041	0.0051
-1.0	288.4	49.2	2.440	2.21	1.041	0.0051
10	327.9	48.9	2.317	2.21	1.041	0.0051
20	382.9	48.2	2.194	2.21	1.041	0.0051
35	450.4	46.9	2.072	2.21	1.041	0.0051
50	517.9	45.5	1.949	2.21	1.041	0.0051
65	585.4	43.6	1.922	2.21	1.041	0.0051
80	652.9	41.7	1.908	2.21	1.041	0.0051

Each values of the parameters are defined for each value of the temperature

Measurements & refinements by Per O Risman, Microtrans AB, Sweden


Results - Average SAR Distrubutions


-2.429228e+01

Results - Ablation Zones

NBC w/o HF

NBC with HF

The maximum is set to 60°C so the ablation zones can be clearly visible

6.000000e+01

Results - Ablation Zones

Ablation Zones Dimensions.

	Length x Diameter (mm)
Experiment	38 x 31
NBC+HF	36 x 35.48
NBC	— x 31.28
NBC+HF+TD material parameters	25 x 23.08

Using the heat distribution, ablation zones ($\geq 60^{\circ}$ C) were determined.

In that case it is impossible to determine the length of the AZ cause to its irregular shape.

Conclusions

- The difference between the results may have several reasons like innacurate experimental methods and due to differences in the parameters of the real liver and those assumed in the model
- Adding the bio-heat equation to BHM should make the results more precise
- Further works requires an experimental method that will allow for more precise determination of the ablation zone and parameters of the liver or other samples

We are open to new collaborations!

contact email: tomasznalecz@qwed.com.pl

Acknowledgment

This work is performed within the EUREKA-Eurostars project 5G_Foil and cofunded by the Polish National Centre for Reaserch and Development under

contract DWM/InnovativeSMEs/176/2023 and

InnovativeSMEs/4/100/5G_Foil/2023 and by the Luxembourg Ministry of Economy under contract 2023-A127-X187.

