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Motivation

Traditional microwave design: discrepancies
O hardware prototyping, trimming, and tuning :> between design versus actual performance
O multiple, time-consuming iterations often come from uncertainties

Q difficult to tolerate in today’s competitive environment in materials’ data

— el ————— —

1-2 Quarters

from: M.Hill & M.Celuch, IPC APEX EXPO 2021 (iNEMI project presentation)



Principles of Resonator Measurements
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Popular resonators for material measurements
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Split-Post Dielectric Resonator (SPDR) Split Cylinder Resonator (SCR)

+better repeatability & reproducibility
+applicable to higher Dk / thicker samples
- practically limited to 15GHz

+available for higher frequencies
- limited to thin, low-Dk samples
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The Q-Choke suppresses
modes other than TEOnp.




QWED New Product
Description taken from the
presentation of

M. Olszewska-Placha

Based on patent application..
by. W.Gwarek

Key results:

measured thick stack

of sapphire samples,

up to quarter-wavelength
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Follow-Up on Q-SCR

Q-SCR 10GHz operation parameters:

[ 10 GHz (higher frequencies coming
soon...)
m Dk=1-15
® Df>10
accuracy:
dDk < 0.2%
dDf < 2%

[ high repeatability:
for COP 187um, Dk=3.347,
— st. dev.=0.0002

m  sample dimensions:
min 40 x 40 mm
max 100 x 100 mm

m thickness:
Up to 4 mm for low-loss materials
(e.g. sapphire)

https://www.qwed.eu/resonator gscr.html




Special attention to Split Post Dielectric Resonators
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Spemal attention to SPDRs
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SPDRs in Practice:

designed by J. Krupka
« commercialized by
QWED since 1998

i ] plrcmtl i AT « > 1600 units sold to

ARANEA| um(immdllnw ||‘||I leading industry and
\‘“‘“ ‘l“ l ‘ research worldwide
N u * 0.000000e+00

Properties:

* Fields concentrated in dielectric posts

* No vertical currents in metal walls permitting horizontal slots for insertion of sample;
* In-plane measurements

« Each of SPDRs is for one frequency

« TEO011 mode excited by loops inserted through cavity side-walls



Can SPDR be used at higher resonances?
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interesting mode (TE021) is practically hidden by
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Can SPDR be used at higher resonances?
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SPDR to QSSR Can we extend dielectric to entire cavity?

increasing D/h ratio of dielectric insert would enhance the chances of getting more useful (TEOn1)
resonances but it would be more difficult to have the dielectric hanged by a central post
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SPDR to QSSR Can we extend dielectric to entire cavity?

When the dielectric post size matches the size of cavity we may try to eliminate the post hanging.

The horizontal electric field (upper left) is continuous, electric energy is focused in the sapphire and the
sample (right).
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SPDR to QSSR Can we use the side excitation ?
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Side excitation (upper drawing:

produces a plethora of modes.
Desired TEON1 is difficult to detect

Excitation by centrally placed ports
(lower drawing).

Looks much better,
but there is a problem with feasibility of
such excitation.

It is obvious that side excitation would
not work in SSR and we should do our
best to find the arrangement as close as
possible to central excitation.
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SPDR to Q$SR Application of Q-chokes

(o)
(o)
(o)
(o)
(o)
(o)

Q-Choked Split Cylinder Resonator (Q-SCR)
and currents in its metal encasement

Q-Choked Sapphire Sandwiched Resonator (Q-SSR)
end currents in its metal encasement

Q-chokes in Q-SCR look different from those in Q-SSR, but their work is very similar in both cases.

W .K. Gwarek (QWED)
Eur. Patent Appl. No. EP23461651.4, also: Intl. Patent Appl. No. PCT/IB2024/056934
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SPDR to QSSR Application of Q-chokes

40l | — SSR

18 20 22 24 26 28 30 32
Frequency [GHZ]

8 10 12 14 16

Measured transmission through Q-SSR and SRR (both empty)

SSR (without choke)
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Measured difference of unloaded Q-factors between SSR and Q-SSR

n-th 1
Resonance

Frequency Frequency Frequency Frequency Frequency Frequency

Parameter [Ghz] Q-Factor [Ghz] Q-Factor [Ghz] Q-Factor [Ghz] Q-Factor [Ghz] Q-Factor [Ghz] Q-Factor
SSR-0.6
D @ 11.867 7417 13.381 9320 17.984 14987 21.379 13361 24.778 15486 28.090 4953
QSSR - 0.6
@ 11.823 8147 14.627 11396 17.912 12309 21.270 16092 24.625 17345 27.890 10759

Introduction of the lossy material at the bottom of the choke channels does not
cause significant lowering of the Q-factor. Differences between SSR and Q-SSR
should be attributed rather to less reliable extraction of Q-factors in multi-
resonance environment of SSR.



From an SPDR with extended D/h ratio to QSSR

|
1 Results (total 12 including 6 from tasker & QProny) E’

W, Results

¢

% Scale | ¥ Radiation Bl Bport BI import L Additional A

N @ MMEO @ ™ A W k| B

Config References | Dynamic Refresh | First All | XY |Polar Smith Extended Power SWR 3d8 Gamma  Tuning

-40
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Values 5 X
Symbol Name Domain Value Units
—l—|521|... F=11.0000 [GHz] -120.482910 [dB]

/RFF Snan at=Q03537 Srale® AR Pnnc' SK1 TFMPI Name* Sanh 3N ref1t7 0 Nrut

) Qfactpry - (]

QFactors for signal no: 1 F_i, Ampl_i, Q_i
3.5857986E+10 0.0000000E+00 959.3669
2.7246318E+10 1.8500426E-05 1455.132
1.5541942E+10 4.5778183E-06 1839.673
1.8156898E+10 1.0455400E-05 4381.549
2.4231748E+10 1.7852904E-05 11004.09
2.1087355E+10 1.5259844E-05 11218.32
QFactors for signal no: 2 F_i, Ampl_i, Q_i
3.5858031E+10 0.0000000E+00 960.4846
2.7246318E+10 6.9710841E-05 1456.097
1.5541953E+10 1.7246748E-05 1840.349
1.8156904E+10 3.9389655E-05 4386.473
2.4231746E+10 6.7273875E-05 10973.20
2.1087353E+10 5.7495028E-05 11246.13
QFactors for signal no: 3 F_i, Ampl_i, Qi
3.4690933E+10 0.0000000E+00 654.9617
3.0353850E+10 1.1326319E-05 605.0762
3.3405788E+10 5.2129353E-06 1143.552
3.1958852E+10 1.8622226E-06 1533.226
2.2592631E+10 2.8530860E-06 1197.766
3.5879408E+10 0.0000000E+00 4063.566
1.5539244E+10 4.5775619E-06 2993.118
1.8156319E+10 1.0295516E-05 10899.02
2.1086878E+10 1.5237452E-05 28173.51
2.4231928E+10 1.7417009E-05 85920.40
QFactors for signal no: 4 F_i, Ampl_i, Q_i
3.4690945E+10 0.0000000E+00 655.3077
3.0353861E+10 4.2682692E-05 604.7582
3.3405788E+10 1.9650250E-05 1144.099
3.1960228E+10 7.0326273E-06 1430.875
2.2592702E+10 1.0751641E-05 1194.725
3.5879404E+10 0.0000000E+00 4066.422
1.5539243E+10 1.7248049E-05 2991.331
1.8156317E+10 3.8788978E-05 10899.02
2.1086878E+10 5.7409423E-05 28290.66
2.4231930E+10 6.5625500E-05 87851.21

Simulation of a QSSR with cavity diameter of d=36.4mm, h=4mm
with two plates of 0.5 mm 2” monocrystal epi-ready sapphire.

Simulations were performed using
QW-3D software by QWED.

Left: abs(S21) obtained by FDTD
single simulation with Gaussian pulse
excitation and Q-Prony signal-
processing module. Center: resonant
frequencies extracted by Q-Prony.

On the next slides we present field
distributions obtained with similar
one-run simulation, but during the
second run performing Fourier
analysis of fields at particular
resonant frequencies obtained from
the first run.

18



Modes in Q-SSR

Hz field patterns simulated with QuickWave 3D FDTD: long-section images at
the second and the fifth resonant mode
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Modes in Q-SSR

Hz field patterns simulated with QuickWave 3D FDTD: cross-section

13.62 [GHZ] 15.54 [GHz] 18.07 [GHZz] 20.89 [GHz]

.

23.93 [GHz] 26.85 [GHz] 29.83 [GHz]
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Q-SSR - Measurement Setup

LHDISAIN

Q-SSR prototype in the measurement setup

Corrugations
(copper rings partially
filled with conductive PLA)

b %
4.°
/ = >
¥

dismantled - open to reveal
its inner construction with Q-Choke.
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Measurement Procedure

3. Insert sample
into Q-SSR slot

1. Measure

resonant frequencies
and Q-factors

of empty Q-SSR.

2. Prepare samples,

4. Measure
measure thickness

resonant frequencies
and Q-factors

of the Q-SSR with sample

—2—0.4 mm Gap
-40/|-—=—-0.1 mm PET
~+4-0,2 mm PET
—4$-0.3 mm PET

* 0.4 mm PET

4. Dedicated software Calculate
a Dielectric constant €
and loss tangent tand

2 16 20 T 28
Frequency [GHz]

5. Example of 4 PET Samples measured on Q-SSR
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Measurements of stacks of PET samples

Measured transmission through the Q-SSR prototype: empty and loaded with 1+4 samples of PET foils, each ca. 0.1 mm thick.

-30
—-—~=0.1 mm PET
40 |1 5. 0.2 mm PET
—~$+-0.3 mm PET i
'_|_50 r : 0 I I
(08 | 4 el
° : i i [
=60 ! i {3l ,
3 | bt g
7] -70 ],. | 1 l:j1 |
1 1

12 14 16 18 20 22 24 26 28 30 32
Frequency [GHZ]
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Validation on Industry Benchmark Sample

COP (cyclo-olefin-polymer) sample chosen as benchmark for the industrial round-robin testing in [5]

2.38 5.0E-04
Xee0000%c%c00,

C 2.36 = 4.06-04 DL
S @ . SCR [6]
g 2.34 ¢ o e téo3 OE-04 . e FPOR [6]
8 . . ‘.....§........... B . [ x R
U m ® Lo
S 232 & 2.0E-04 GrioR
Q —
Q
2L 230 1.0E-04
- 10 20 30 40 o 10 20 30 40 50

Frequency [GHz] Frequency [GHz]

[5] Int. Electron. Manuf. Initiative. (2024). 5G/6G mmWave Materials and Electrical Test Technology Roadmap.

[Online]. Available: https://www.inemi.org/article content.asp?adminkey=cc22bf8eb1bfb8248c594509fe54dd9b&article=275
[6] M. Celuch et al., “Benchmarking of GHz resonator techniques for the characterisation of 5G / mmWave materials,”

in Proc. 51st Eur. Microw. Conf. (EuMC), Apr. 2022, pp. 568-571.
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Supplement

Can we use TM modes for measurements in an SSR

Answer : In general yes ... but...
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Distribution of E-field (red-to yellow) and H-field (green-to blue) of TM010 mode in SSR
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Can we use TM modes for measurements in an SSR?

Answer : In general yes... but...
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QFactors for signal no: 1
1.8025339E+10 1.4502328E-05
1.9676000E+10 0.0000000E+00
1.0719850E+10 4.3109114E-05
1.6464181E+10 3.1370937E-04
1.3354578E+10 1.7595300E-04
QFactors for signal no: 3
1.8026318E+10 4.0981040E-06
1.0719833E+10 7.6336783E-06
1.9675972E+10 0.0000000E+00
1.6464201E+10 8.3203755E-05
1.3354535E+10 3.8338203E-05
QFactors for signal no: 4
1.8026256E+10 2.9215953E-05
1.0719827E+10 5.3372376E-05
1.9675990E+10 0.0000000E+00
1.6464202E+10 5.9176120E-04
1.3354531E+10 2.6988611E-04

F_i, Ampl_i, Q_i
3238.504
11691.28
6502.404
10913.38
10921.22
F_i, Ampl_i, Q_i
5065.090
5197.083
11073.58
11110.94
10810.04
F_i, Ampl_i, Q_i
5581.768
5109.868
10939.42
11142.45
10758.94

QFactors for signal no: 1 F_i, Ampl_i, Q
1.9492250E+10 0.0000000E+00 12827.91
1.2527652E+10 1.7328276E-03 11146.50
1.6025271E+10 8.4653840E-04 14441.60
5.4785587E+09 3.4377250E-04 5362.434
1.0913507E+10 1.3614036E-04 11044.61
QFactors for signal no: 2 F_i, Ampl_i, Q
1.9492235E+10 0.0000000E+00 12934.92
1.2527651E+10 2.1640912E-03 11063.99
1.6025275E+10 1.3522106E-03 14551.51
5.4785326E+09 1.8776572E-04 5375.638
1.0913498E+10 1.4809296E-04 11533.75

QFactors for signal no: 3 F_i, Ampl_i, Q

1.9492403E+10 0.0000000E+00 12537.55
1.6025205E+10 2.2235769E-04 13287.38
1.2527627E+10 3.6632767E-04 11088.60
1.0913646E+10 2.4690136E-05 15319.87
5.4785603E+09 3.2171862E-05 8316.657
QFactors for signal no: 4 F_i, Ampl_i, Q_
1.9492352E+10 0.0000000E+00 13176.86

Simulation of an SSR excited by a
vertical H-field source (as
considered previously)...

...and by a vertical E-field source.
It produces a variety of TM modes
including the dominant TM010 at
5.478 GHz (much lower then the
TEO11 considered before).
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Can we use TM modes for measurements in an SSR?
Yes, but the accuracy will be very low especially for high-€ samples
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- dielectric permittivity of 6.
Colors of materials in the upper picture air-
blue; sapphire- brown; sample-pink.

The TM01 mode produces vertical E-field in
the center. Boundary conditions for fields
normal to the media boundary produce
continuous vertical D-field. That is why lower
= permittivity of a material produces higher E-
peromear . field in it
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R S highest concentration of electrical energy is in
the air and the lowest in the sapphire. That
influences the resonant f.

Resonant frequency is mostly defined by
the shape of the air-filled area. Changes
introduced by the properties of the sample
would be very small and measurement
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Comparison of sensitivity of QSSR to other resonator

To compare sensitivity of QSSR to other resonators we introduce FF01 equal to relative change
of resonant frequency after inserting a sample of thickness 0.1 mm and relative permittivity 2.

Here is the comparison of FF01 for different resonators

SPDR 10GHz-1.18 103 ;

SPDR 5GHz -0.47 103 ;

Q-SCR- 1.97 103 ;

Q-SCR (slot mode) - 1.51 1073 ;

Q-SSR (at the 6-th resonance — 5.5 10-3) ;

Conclusions: QSSR is much more sensitive than other resonators. In fact, the sensitivity of

QSSR can be relatively easily changed by applying Sapphire of different thickness, because

Sapphire wafers are available in a variety of thicknesses, (thicker Sapphire — lower sensitivity).

That is practically impossible in SPDR which uses custom-made dielectric posts.

However, it should be admitted that:

- Higher sensitivity is not always advantageous because it lowers the range of
measurements for high losses;

- Sensitivity of Q-SCR can be increased (even to about 5 10 -3) by limiting the height of the
resonator, although at the cost of lower unloaded Q-factor.



Summary

The recently invented Q-Choke, which purifies spectra of cylindrical resonators to unperturbed TEOnp modes,
has been applied in a new Q-Choked Sapphire Sandwiched Resonator (Q-SSR).

Q-SSR combines the advantages of SCR, Q-SCR, and SPDR test-fixtures for dielectric material measurement,

in particular combines:

O field-focusing by dielectric post in SPDR and its simplicity of operation (fixed slot)

O with spurious-mode-suppression by several Q-Chokes working similarly to the one applied in recent Q-SCR.

Additionally, Q-SSR provides the following features:

O extends application to multi-modal / multi-frequency measurements (6-7 modes)

O covers a broad frequency range (at least 1:2.5 ratio)

L uses easily-accessible standard Sapphire wafers instead of expensive custom-made dielectrics

Q filling factor (determinant to sensitivity) can be modified by applying Sapphire of different thickness

It bridges the gap between traditional cavity / dielectric resonators and emerging FPOR instruments.

First prototype has been manufactured and successfully validated on reference industrial samples.
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Thanks and have a nice visit to Mont Saint Michel

Time to retire

View of the Mt.S. Michel parking in 2008. Ph from an exhibition of Gil cinin
Today you will not be able to see it like that and oto from an exhibition of Gilbert Garc

hear an announcement: ,,Attention: Parking no 2 Rennes taken the same day as that of the parking.

will be flooded in 30 minutes”. The parking has It is clearly an illustration of the life of a scientist
been moved to mainland,



