

Electromagnetic and Thermal Analysis of Microwave Ablation Using FDTD Simulations

Tomasz Nalecz, Lukasz Nowicki, Malgorzata Celuch QWED Sp. z o.o., Poland

Outline

- 1. What is Microwave Ablation?
- 2. Motivation.
- 3. Antenna and model in QW
- 4. Results
- 5. Conclusion

Microwave Ablation (MWA)

- Thermal cancer treatment that uses microwave energy
- Heating caused by friction of oscillating water molecules
- Typically 915 MHz, 2.45 GHz
- Cancer tissues are more likely to heat (more water molecules, higher conductivity and pearmittivity)
- Modified coaxial cable is the simplest example of the MWA antenna
- Ablation Zone ≥ 60°C

Motivation

- Accurate simulations of microwave ablation antennas are essential for optimizing their design, predicting thermal distribution and improving clinical outcomes.
- We want to test and show capabilities of QuickWave (FDTD) in simulating the MWA and further improve it.
- We want to raise awareness of the importance of experimental measurements when using simulations.

3D EM Modelling Benchmarks

T. Nalecz @ AMPERE 2025 @ Bari, Italy 18.09.2025

3D Multiphysics Modelling Regimes in QuickWave

M. Celuch @ IMPI 59 @ Edmonton, Canada 26.06.2025

Antenna Design [*]

Medium	PTFE	Alumina
Permittivity	2.2	10

Choke	Arm	Tip	Cap Base	Cap Point
10 mm	6 mm	1 mm	5 mm	5 mm

-					1	\
ŧ		1]			
						L
						Tı
	Ø 0.2032 mm	Ø 0.61 mm	Ø 0.787 mm	Ø 1.32 mm	Ø 1.53 m	m
F.W. 7. 1. 4. 6.		- "				

	$oldsymbol{arepsilon}_r$	σ (S/m)	$ ho$ (kg/ m^3)	C (J/kg· °C)	K (J/s∙ m⋅°C)
Liver	43.03	1.69	1041	3600	0.51
Tumor	57	3	1050	3500	0.50

[*] M. Cavagnaro, C. Amabile, P. Bernardi, S. Pisa and N. Tosoratti, "A Minimally Invasive Antenna for Microwave Ablation Therapies: Design, Performances, and

Experimental Assessment,"

T. Nalecz @ AMPERE 2025 @ Bari, Italy 7
18.09.2025

Antenna Model in QW

BOR V2D

Neumann boundary condition was set as the external boundary condition

Cell size: dx = 0.5 mm

dy = 0.1 mm

Tumor radius R = 10 mm Centered at 33 mm

Number of cells with boundaries: 136144

Project size (RAM): ∼13 MB

Whole model size: 65 mm x 50 mm

Length of the antenna: 42 mm

TEM exciation at 2.45 GHz

Comparision between with and without a tumor -

S11 Parameters

S11 coefficient changes with the occurrence of tumor!

Comparision between with and without a tumor -

SAR distribution

So does the SAR distribution

A – without a tumor

B – with a tumor

Antenna Model in QW Robin Boundary Condition

Convective heat transfer coefficient [W cm⁻² K⁻¹]

# Boundary con	ditions definiton	file for thermal QW3D module	9
!Temperature	Enthalpy	Ha	
37	0.8	0.01	
40	0.8	0.01	
45	0.8	0.01	
50	0.8	0.01	
55	0.8	0.01	
60	0.8	0.01	
65	0.8	0.01	
70	0.8	0.01	
75	0.8	0.01	
80	0.8	0.01	

Special cases:

 $Ha = 0 \rightarrow Neumann BC$

 $Ha = +INF \rightarrow Dirichlet BC$

Antenna Model in QW Robin Boundary Condition

Thermal Distribution

20W - 15 min

Antenna Model in QW Robin Boundary Condition

20W – 40 seconds

$$A - Ha = 0.01 \text{ W cm}^{-2} \text{ K}^{-1}$$

$$B - Ha = 0.1 W cm^{-2} K^{-1}$$

$$C - Ha = 0.5 \text{ W cm}^{-2} \text{ K}^{-1}$$

Conclusions

- The results of the electromangetic analysis vary depending on the presence of tumor.
- Using Robin Boundary Condition maybe not be an usual practice, but it can show you how important is knowledge of experimental results.
- These cases (also from IMPI conference) shows us the capabilites of QW in MWA simulations and what it's need to be improved.

Acknowledgements

The work of research team at QWED is currently co-funded by:

the Polish National Centre for Research and Development under contracts

M-ERA.NET3/2021/83/I4BAGS/2022 and InnovativeSMEs/4/100/5G_Foil/2023

M-ERA.NET 3 has received funding from the *European Union's Horizon 2020* research and innovation programme under grant agreements *No 958174*.

Eurostars is part of the European Partnership on Innovative SMEs, co-funded by the European Union through Horizon Europe.

We kindly acknowledge the collaborations with our partners in the above European projects.

We acknowledge the iNEMI "5G" partnerships for round-robin experiments and discussions.

We acknowledge IEEE MTT-S for being home to our research.

Special thanks to all our industrial clients and partners for driving our developments and their kind permission to publish selected industrially-representative results.

We are open to new collaborations!

contact email: tomasznalecz@qwed.com.pl

