

Th1D-5

Novel Q-Choked Sapphire Sandwiched Resonator for Wide-Band Measurements of Flat Dielectric Samples

Wojciech Gwarek, Malgorzata Celuch, Lukasz Nowicki

Outline

- Basic Theory of Resonantors
- New Test Measurement device
 Q-Choked Sapphire Sandwiched Resonator (Q-SSR)
 - Construction
 - EM Field distribution
 - Measurement procedure
- Results on reference COP sample
 - (Comparison with other methods)
- Conclusions

Resonator Method Theory

Theoretical model of cylindrical resonator

Cylindrical resonator with TE_{011} mode: vertical cross-section of a simple cavity indicating magnetic field lines and directions of currents in the cavity walls From our last paper:

M. Celuch, M. Olszewska-Placha, L. Nowicki and W. Gwarek, "A Novel Q-Choked Resonator for Microwave Material Measurements Alleviating Sample Thickness Limitations of Existing Techniques," in *IEEE Microwave and Wireless Technology Letters*, vol. 34, no. 6, pp. 845-848, June 2024, doi: 10.1109/LMWT.2024.3397912

Resonator Method Theory

For canonical geometries, the eigenvalue problem can be solved analytically; for example, for a cylinder of radius R, height H, and homogeneously filled with a lossless non-magnetic dielectric of dielectric constant Dk we obtain equation:

zoom around one of the resonances, illustrating the meaning of resonant frequency and 3-dB bandwidth

$$f_{r,mnp} = \frac{c}{\sqrt{Dk}} \sqrt{(\frac{k_{mn}^{(,)}}{\pi R})^2 + (\frac{p}{H})^2},$$

Vertical cross-section of cylindrical resonators

Split Cylinder Resonator (SCR)

Q-Choked Split Cylinder Resonator (Q-SCR)

The Q-Choke is a cavity modification that suppresses unwanted resonant modes while preserving the TE₀np measurement mode.

It uses symmetric radial slots near the top and bottom of the cavity, which do not disturb TE_0 np modes but interrupt current paths of spurious TEmnp (m > 0) and TM modes.

These currents are redirected into radial channels terminated with lossy pockets, where the unwanted energy is dissipated. This structure acts as a choke, selectively damping undesired modes without affecting measurement performance.

The Proposed Q-SSR At a Glance

Parameter	Symbol	Value	Description
Sapphire disk diameter	d _s	50.8	Diameter of monocrystal sapphire plate
Sapphire disk height	h _s	0.4	Thickness of sapphire plate
Cavity half-height (one- sided)	h _c	3	Height of one half of the cavity
Cavity diameter	d _c	41.2	Internal cavity diameter
Central post diameter	d_p	8	Diameter of the central post
Inner diameter of external choke	d _e	46	Inner diameter of external corrugation (Q-choke outermost ring)
Metal teeth width (Q- choke)	\mathbf{w}_{m}	1.9	Width of the metal 'teeth' in the Q-choke
Air corrugation width (Q-choke)	W _c	2.1	Width of the air gaps in the Q-choke
Air corrugation height	h _a	5	Height of the air part of the Q-choke
Absorbing material height	h _q	5	Height of the lossy PLA material in the Q-choke
Relative permittivity (sapphire)	$\mathbf{\epsilon}_{r}$	≈9.399	In-plane permittivity of the sapphire
Loss tangent (sapphire)	tanδ	≈1.33×10 ⁻⁵	Loss tangent of sapphire plate
Q-Choke structure	_	5 rings	4 corrugated in bottom/cover + 1 external corrugation

Vertical cross-section of cylindrical resonators Q-SSR proposed herein

Electric field distribution in Q-SSR

Q-SSR - Measurement Setup

Q-SSR prototype as used in the measurement setup

Corrugates (copper rings partially filled with carbon)

dismantled open for revealing its inner construction with a Q-Choke.

Measurement Procedure

Q-SSR Gap

1. Measure the resonant frequencies and corresponding Q-factors of the Q-SSR without any sample inserted.

2. Input sample into

Samples under Test Sample inser

4. Dedicated software Calculate a Dielectric constant ε and loss tangent tanδ

3. Measure the resonant frequencies Q-factors of the Q-SSR with sample under test

5. Example of 4 PET Samples measured on Q-SSR

Frequency [GHz]

IMS Measurements taken on PET samples

Measured transmission through the Q-SSR prototype, empty and loaded with $1\div4$ samples of PET foils, each ca. 0.1 mm thick.

How Q-Choke works

< Th1D-5>

SRR (without the choke).

Q-SRR (with the choke).

Measured transmission through Q-SSR and SRR (without the choke).

Comparison of Q-SSR to other methods

Validation of the proposed Q-SSR for an industrial COP sample – Dielectric constant ε

Comparison of Q-SSR to other methods

Validation of the proposed Q-SSR for an industrial COP sample – Loss tangent tanδ

Summary

New Concept Introduced:

Developed and validated a new Q-Choked Sapphire Sandwiched Resonator (Q-SSR) for dielectric material characterization

Key Advantages:

- Combines simplicity and precision of SPDRs
- Enables multi-resonance measurements (6-7 modes)
- Covers a **broad frequency range** (at least 1:2.5 ratio)
- Bridging the Gap:
- Fills the frequency space between traditional SPDRs and emerging FPOR instruments
- Validated over the 12–30 GHz band
- Prototype Validated & Next Steps:
- First prototype successfully built and tested
- Additional units under design for further expansion
- Impact Potential:
- Aims to become a **practical**, **go-to solution** for precise, broadband dielectric measurements of flat samples
- Poised to be a valuable tool for the microwave measurement community

Acknowledgments

This work was supported by the Polish National Centre for Research and Development under contracts

M ERA.NET3/2021/83/I4BAGS/2022 (M-ERA.NET I4Bags project) and InnovativeSMEs/4/100/5G_Foil/2023 (EUREKA-Eurostars 5G_Foil project).

< Th1D-5>

