Application	SPDRs are intended for the measurements of the complex permittivity of laminar dielectric materials including LTCC substrates, but also thin ferroelectric films deposited on low loss dielectric substrates. Additionally, SPDR's can be used for the measurements of the surface resistance and conductivity of various conducting materials such as commercial resistive layers, thin conductive polymer films or high resistivity semiconductors. Such measurements are only possible for large surface resistance samples with Rs > 5 k Ω /square.
Accuracy of measurements of a sample of thickness <i>h</i>	$\Delta \varepsilon / \varepsilon = \pm (0.0015 + \Delta h / h)$ $\Delta \tan \delta = \pm 2 \cdot 10^{-5} \text{ or } \pm 0.03 \cdot \tan \delta \text{ whichever is higher}$
Operational frequency range	SPDR uses a particular resonant mode. This mode has a particular resonant frequency depending on resonator's dimensions but also, to some extent, on the electrical properties of the measured sample. Thus, each resonator is designed for a particular nominal frequency and the actual measurement is taken at a frequency close to the nominal one. The nominal frequencies of the basic line of SPDRs are: 1.1 GHz, 1.9 GHz, 2.45 GHz, 5 GHz, 10 GHz. Resonators for the other frequencies in the range between 1.1 and 20 GHz can be manufactured upon special request.
Operational temperature range	-200 °C ÷ 110 °C
Operational temperature range Additional equipment needed to perform measurement	-200 °C ÷ 110 °C Vector Network Analyser
Operational temperature range Additional equipment needed to perform measurement Measurement procedure	-200 °C ÷ 110 °C Vector Network Analyser Resonant frequency and Q – factor of the empty resonator and the resonator with investigated sample are measured. Dedicated software is provided for permittivity and dielectric loss tangent determination. The users who have access to one of the PNA/ENA Series network analysers by Agilent Technologies equipped with 85071E Material Measurement software with Option 300 simply upload the software to the network analyser and obtain the final results directly on its display. The users working with different network analysers need to install the software for dielectric properties calculation on a standard PC computer.

Table 1a. The minimum sizes of sample for operating frequencies

Nominal frequency [GHz]	Minimum sizes of sample [mm]	Maximum thicknesses of sample [mm]
1.1	120×120	6.0
1.9	70×70	4.0
3.2	50×50	3.0
5 ÷ 6	30×30	2.0
9 ÷ 10	22×22	1.0
13 ÷ 16	15×15	0.6
18 ÷ 20	10×10	0.5

Single Post Dielectric Resonators (SiPDR)

Fig. 2 Cross section of Single Post Dielectric Resonator

Table 2. Parameters of Single Post Dielectric Resonators (SiPDR)

Application	SiPDRs are intended for the measurements of the surface impedance of metamaterials and resistive films as well as for the contact-less measurements of the conductivity of semiconductor wafers. Range of thin film materials that can be measured includes resistive layers, thin metal films and conductive polymer films with the surface resistance Rs < 20 kΩ/square. For semiconductors wafers the upper limit for resistivity measurements is about 1000 Ωcm. Semiconductors with higher resistivity values can be conveniently measured with split post dielectric resonators. All single post dielectric resonators are custom made.	
Accuracy of measurements of a sample of thickness <i>h</i>	The surface resistance is determined with accuracy of about ± 2%.	
Operational frequency range	SiPDRs can be produced at resonant frequencies from 2 GHz to 30 GHz.	
Operational temperature range	-270 ⁰ C ÷ 110 ⁰ C Vector Network Analyser	
Additional equipment needed to perform measurement		
Measurement procedure	Resonant frequency and Q – factor of the empty resonator and the resonator with investigated sample are measured. The measured values are saved in a text file in the format specified in the manual of the resonator. Dedicated application (provided together with the resonator) reads the values listed in the file and calculates the surface resistance <i>R</i> .	

TE018 Dielectric Resonators

Split Post Dielectric Resonators (SPDR)

Fig. 1 Cross section of the Split Post Dielectric Resonator (SPDR)

QWED manufactures several types of resonators for precise measurements of electromagnetic properties of materials at microwave frequencies, based on years of research led by prof. Jerzy Krupka*. Each resonator is equipped with specialised software for extracting the relevant data from measurements. All resonators manufactured by QWED that are intended for determination of the complex permittivity or other electromagnetic properties of materials require precise measurement of their resonant frequencies and Q – factors. These parameters have to be measured twice, namely in the presence and in the absence of the sample under test. The most accurate apparatus for resonant frequencies and Q – factor measurement at microwave frequencies is automatic network analyser. Once resonant frequencies, Q – factors and dimensions of the sample are measured, appropriate computations have to be performed using dedicated software provided by QWED for a specific resonator.

*Jerzy A. Krupka is a world recognized expert in electromagnetic property measurements of materials at microwave frequencies. He received the Ph.D. and the D.Sc. in electronic engineering from the Warsaw University of Technology, where he is currently a Professor. Two of his several awards are shown below.

For more information about QWED and prof. Jerzy Krupka refer to www.qwed.eu

Table 3. Parameters of TE018 Dielectric Resonators

Application	$TE_{01\delta}$ mode dielectric resonator technique is intended for very precise complex permittivity measurements of bulk low loss disc or cylinder shape dielectric ceramics. Additionally, with this technique the thermal coefficients of permittivity and the dielectric loss tangent can be measured. With this application QWED offers dedicated software for the rigorous computations of the complex permittivity as well as cavities of different size with adjustable coupling mechanisms and low loss dielectric supports. All TE_{01\delta} mode dielectric resonator cavities are custom made.
Accuracy of measurements of a sample of diameter <i>d</i>	$\Delta \varepsilon / \varepsilon = T \Delta h / h + (2 - T) \Delta d / d$ for $0 < T < 2$ $\Delta \tan \delta = \pm 2 \cdot 10^{-6} \text{ or } \pm 0.03 \cdot \tan \delta$
Operational frequency range	Measurement frequency depends on the diameter, height and permittivity of the sample under test, and for typical samples is in the range of $1 \div 10$ GHz. Measurements at higher frequencies are possible by employing either smaller cavities and samples or higher order quasi TE _{0mn} modes.
Operational temperature range	-270 °C ÷ 110 °C
Additional equipment needed to perform measurement	Vector Network Analyser
Sample dimensions	To obtain the highest precision of the measurements, the size of the sample under test should be in the range of $0.25 \div 0.6$ of the size of the cavity (for both dimensions: diameter and height).
Measurement procedure	Sample under test is placed in a metal cavity on a low loss dielectric support. Resonant frequency and Q-factor of the $TE_{01\delta}$ are measured. Dedicated software is provided for permittivity and dielectric loss tangent determination.

QWED resonators for graphene measurements

Investigation of graphene properties has been a hot subject in the world's scientific community for the last couple of years. In October 2010, the interest in the subject was additionally fuelled by the Nobel Prize in Physics awarded jointly to Andre Geim and Konstantin Novoselov "for groundbreaking experiments regarding the two-dimensional material graphene".

QWED is happy to announce that our expert, Prof. Jerzy Krupka, has developed resonators specifically designed for the measurements of electrical properties of graphene deposited on small 10 mm x 10 mm dielectric substrates at microwave frequencies (around 13 GHz). The resonators are now commercially available through QWED.

www.qwed.eu

info@qwed.eu / tel.: +48 22 625 73 19 / fax: +48 22 621 62 99 QWED Sp. z o.o. / ul. Krzywickiego 12 / 02-078 Warsaw / POLAND The family of dielectric resonators for precise measurements of electromagnetic properties of materials at microwave frequencies

www.qwed.eu